다음은 AWS 공식 홈페이지의 Well architectured 를 위한 5가지 성질을 정의한 내용이다.

https://aws.amazon.com/ko/architecture/well-architected/

 

AWS Well-Architected – 안전하고 효율적이며 클라우드가 지원되는 애플리케이션을 구축

Well-Architected 프레임워크는 애플리케이션에 사용할 보안, 성능, 복원력 및 효율성이 뛰어난 인프라를 구축하는 클라우드 아키텍트를 돕기 위해 개발되었습니다. 5가지 기반인 운영 우수성, 보안, 안정성, 성능 효율성 및 비용 최적화를 기반으로 하는 이 프레임워크는 고객 및 파트너가 아키텍처를 평가하고, 지속적으로 확장되는 설계를 구현하기 위한 일관적인 접근 방식을 제공합니다. 이제 AWS Well-Architected Tool을 사용할 수 있습

aws.amazon.com

1. 운영 우수성(Operational Excellence)

비즈니스 가치를 제공하고 시스템을 실행 및 모니터링하는 데 중점을 둔다.

변경관리 및 자동화, 이벤트 응답, 일상적인 운영의 성공적인 관리 와 같은 항목들이 고려되어야 한다.

Operational Excellence 를 위한 다음과 같은 원칙들이 있다.

 

 - Perform operations as code : Cloud 환경에서도 일반 어플리케이션 코드를 만들 때처럼 작업의 프로시저와 이벤트에 대한 동작을 구현해야 한다. 휴먼 에러를 배제하고 이벤트 중심으로 구동되게끔 설계해야 한다.

 

 - Annotate documentation : 매빌드 이후에 Document 를 만들도록 자동화시키는 것이 중요하다. Cloud 환경에서는 documentation 을 자동화시킬 수 있다.

 

 - Make frequent, small, reversible changes : Component 들의 주기적 업데이트를 가능하게 하고, 실패 시 Rollback 이 가능해야 한다.

 

 - Refine operations procedures frequently : 주기적으로 프로세스를 향상시킬 방법을 고안해야 한다.

 

 - Anticipate failure : 프로세스가 실패로 이어질 상황을 시뮬레이션 해보는 것이 필요하다.

 

 - Learn from all operational failures : Operation failure 에 대해 정리하고 학습해야 한다.

 

* Operational Excellence 를 위해 AWS Config 를 통해 테스트를 준비하고, Amazon CloudWatch 를 통해 모니터링하며, Amazon ES(Elastic Search Service) 를 통해 로그를 분석하는 것이 좋다.

 

2. 보안(Security)

정보 및 시스템을 보호하는 중점가치이다.

데이터 기밀성 및 무결성, 권한 관리를 통한 사용자 작업 식별 및 관리, 시스템 보호와 보안 이벤트 제어와 같은 항목들이 고려되어야 한다.

Security 요소를 위해 다음과 같은 원칙들이 있다.

 

 - Implement a strong identity foundation : 최소 권한의 원칙과 의무에 대한 권한을 AWS Resources단위로 부여한다.

 

 - Enable traceability : 모든 동작은 모니터링과 알람이 가능하게끔 해야한다. 로그 시스템을 통합시켜놓음으로써 자동화가 가능하다.

 

 - Apply security at all layers : 모든 계층에 보안 요소를 포함시킨다. (edge network, VPC, subnet, Load Balancer, instances, OS, application)

 

 - Automate security best practices : Security mechanism 을 자동화시킨다. 버전관리를 하듯 템플릿을 관리한다.

 

 - Protect data in transit and at rest : 데이터에 대해서도 Encryption, Tokenization, Access control 등을 적용한다.

 

 - Prepare for security events : 갑작스런 보안 사고에 대비해 simulation 해보고, 탐지 속도, 탐지력, 복원력 을 측정해보는 것이 좋다.

 

* Security 를 위해 IAM, CloudTrail(API Call 추적), Amazon VPC, Amazon CloudFront(CDN 데이터의 보안), 데이터 보안을 위한 RDS, S3, AWS KMS(Key management system), CloudFormation / CloudWatch(시뮬레이션 및 모니터링) 등을 이용하는 것이 좋다.

 

3. 안정성(Reliability)

비즈니스 및 고객 요구를 충족시키기 위해 장애를 예방하고 신속하게 복구할 수 있는 능력에 중점을 둔다.

기본요소, 복구계획 및 변경 처리와 같은 항목들이 고려되어야 한다.

Reliability 를 위해 고려해야할 원칙들은 다음과 같다.

 

 - Test recovery procedures : System fail 및 fail 에 대한 recovery 상황을 테스팅하고 전략을 수립할 수 있기 때문에, 시나리오에 알맞게 recover 동작을 테스트해보는 것이 필요하다.

 

 - Automatically recover from failure : Key Performance Indicator(KPI) 를 모니터링함으로써 이상상태에 대한 Threshold 값을 세팅할 수 있고 복구를 자동화할 수 있다.

 

 - Scale horizontally to increase aggregate system availability : Horizontal scaling 은 Single Failure 가 전체 시스템에 영향이 미치지않게끔 구성할 수 있게 한다. 구조를 수평적으로 작게 나누고 합치는 형태의 구조를 사용한다.

 

 - Stop guessing capacity : 온프레미스 환경의 흔한 오류 원인은 Resource 포화상태이다. 클라우드 환경에서는 Load 를 모니터링하고 System utilization 을 통해 Provisioning 을 자동화할 수 있다. (Under/Over provisioning 의 방지)

 

 - Manage change in automation : 인프라 구성의 변화는 자동화되어야 한다.

 

* 사용가능한 AWS 서비스들로 AWS IAM, AWS CloudTrail, AWS Config, AWS CloudFormation, AWS KMS 등의 서비스가 있다.

 

4. 성능 효율성(Performance Efficiency)

IT 및 컴퓨팅 리소스를 효율적으로 사용하는데 중점을 둔다.

요구사항에 적합한 리소스 유형 및 크기, 성능 모니터링 정보를 바탕으로 한 효율성 유지와 같은 항목들이 고려되어야 한다.

Performance Efficiency 를 위해 고려해야할 원칙들은 다음과 같다.

 

 - Democratize advanced technologies : 새로운 기술이 있을 때, 클라우드 환경에서는 쉽게 적용시킬 수 있다.

 

 - Go global in minutes : Multiple Region 에 몇번의 클릭만으로 배포가 가능하다. 이는 고객 입장에서도 적은 비용으로 만족감을 느낄 수 있는 서비스의 특성이 된다.

 

 - Use serverless architecture : 클라우드의 서버리스 아키텍쳐는 서버를 직접 구동하고 운용할 필요성을 크게 줄여준다. 

 

 - Experiment more often : 가상의 자동화된 환경에서 테스트는 좀 더 빠르게 이루어질 수 있다.

 

 - Mechanical sympathy : 기술적 접근 방법을 고려한다.

 

* Performance Efficiency 를 위해, Auto Scaling, Amazon EBS, Amazon RDS, Amazon Route53, ElastiCache, CloudFront 와 같은 서비스들이 활용될 수 있다.

 

5. 비용 최적화(Cost Optimization)

불필요한 비용의 발생을 방지하고 지출 내용을 파악하여 가장 적합한 수의 적절한 리소스 사용에 초점을 둔다.

지출분석을 통해 초과비용 없이 비즈니스 요구사항을 만족시키는 조정 항목들이 고려되어야 한다.

Cost Optimization 을 위해 다음 원칙들이 고려되어야 한다.

 

 - Adopt a consumption model : 필요한 만큼의 컴퓨팅 리소스에 대해서만 비용이 지출되어야 하고 비즈니스 요구에 따라 사용량이 조절되어야 한다. (예측해서 많이 잡거나 해서는 안된다.)

 

 - Measure overall efficiency : 비즈니스의 전체 workload 와 output 을 측정해야 한다.

 

 - Stop spending money on data center operations : 인프라 관리비용 자체에 돈을 더 쓰면 안된다.

 

 - Analyze and attribute expenditure : Cloud 환경에서는 시스템의 사용량을 조회하고 비용을 산정하기 쉽다. ROI 를 측정하고 Resource 를 최적화하자.

 

 - Use managed services to reduce cost of ownership : Cloud 환경을 이용하면 email 을 보낸다던지하는 운영의 비용이 감축된다.

 

* AWS Cost Explorer 를 사용해서 비용 산정량을 확인할 수 있다. AWS Budget 은 사용량에 따라 향후 사용량을 예측할 수 있게 지원한다.

또한 Resource 를 Amazon Aurora 와 같은 것을 사용하면 라이센스 비용을 절감할 수 있고, Auto Scaling 은 스케일링의 효율성을 증가시켜준다.

 

 

처음 클라우드 기반 아키텍처를 설계할 때 상당히 도움이 되었었던 내용들이다.

클라우드 기반 아키텍처 설계를 담당하게 되었다면 꼭 알아두고 복습하자.

 


프로그램 언어를 해석하고 실행시키는 대표적인 방법으로 Compile 과 Interpret 방식이 있다.

Compile 작업은 Compiler 에 의해 실행되고, Interpret 작업은 Interpreter 에 의해 실행되는데, 두 컨셉이 명확하게 다르기 때문에 

많은 프로그래밍 언어들은 둘 중 한가지 방식을 통해 언어를 실행하도록 설계된다. (Java 와 같이 두가지를 모두 채용하는 경우도 있다!)

그렇기 때문에 Compiler 와 Interpreter 를 이해하는 것은 어떤 언어를 배우던지간에 해당 언어의 구동원리를 배울 수 있는 중요한 선행학습이라할 수 있겠다.


컴파일 (Compile)

프로그래밍 언어를 Runtime 이전에 기계어로 해석하는 작업 방식이다.
이때 원래의 소스를 원시 코드, 바뀐 코드를 목적 코드(Object Code) 라 한다.

런타임 이전에 Assembly 언어로 변환하기 때문에 구동 시간이 오래걸리지만, 구동된 이후는 하나의 패키지로 매우 빠르게 작동하게 된다.
구동시에 코드와 함께 시스템으로부터 메모리를 할당받으며 할당받은 메모리를 사용하게 된다.

런타임 이전에 이미 해석을 마치고 대게 컴파일 결과물이 바로 기계어로 전환되기 때문에 OS 및 빌드 환경에 종속적이다.
그러므로 OS 환경에 맞게 호환되는 라이브러리와 빌드환경을 구분해서 구축해줘야 한다.

Compile 언어의 대표격으로 C / C++ 와 같은 언어들을 들 수 있으며, Java 역시 Byte Code 로 바꾸기 위한 과정에서 컴파일을 수행한다.


인터프릿 (Interpret)

런타임 이전에 기계어로 프로그래밍 언어를 변환하는 컴파일 방식과 다르게, 런타임 이후에 Row 단위로 해석(Interpret) 하며 프로그램을 구동시키는 방식이다.

프로그래밍 언어를 기계어로 바로 바꾸지않고 중간 단계를 거친 뒤, 런타임에 즉시 해석하기 때문에 바로 컴팩트한 패키지 형태로 Binary 파일을 뽑아낼 수 있는 Compile 방식에 비해 낮은 퍼포먼스를 보이게 된다.

런타임에 직접 코드를 구동시키는 특징이 있기 때문에 실제 실행시간은 느리며, 대신 런타임에 실시간 Debugging 및 코드 수정이 가능하다.

또한 메모리를 별도로 할당받아 수행되지 않으며, 필요할 때 할당하여 사용한다. 이와 관련되어 코드의 흐름 자체도 실제 필요할 때, 실제 수행되어야하는 시점에 수행되기 때문에 덕타이핑(Duck Typing) 이 가능한 측면이 있으나, 반대로 정적 분석이 되지않는 Trade off 를 갖고 있다.

 

대표적인 Interpreter 언어로는 Javascript 와 같은 스크립팅 언어들이 있다. 하지만, 스크립트 언어 뿐 아니라 컴파일 이후의 동작에서 Interpret 을 수행하는 언어들도 많이 존재한다.


많은 프로그래밍 언어들의 인터프리터는 해석을 위한 Virtual Machine 을 두고, Machine 위에서 Interpret 을 수행하게 되는데, 이 때 해석의 기반이 되는 머신들이 OS 환경들을 지원해줌으로써, 해당 방식으로 인터프리터는 OS 및 플랫폼 에 종속되지않는 프로그램 구동이 가능하게 된다.
(이런 특징을 지닌 Interpreter 는 Java 의 JVM 과 Python 의 Analyzer 가 있겠다.)


컴파일러와 인터프리터의 차이는 잘 이해하고 언어와 환경을 파악하는데 활용하는 것이 중요하다.


HTTP 와 HTTPS 의 차이점에 대해 면접 볼 때 질문 받은 적이 있었다.
당시 많이 긴장하고 해당 면접에 대해 Deep 한 질문들이 나오던 와중에 받은 질문이어서 보안을 위한 HTTP 라는 정도로 얼버무린 기억이 있는데,
만약 다음에 질문받게되면 깔끔하고 완벽하게 답변할 수 있도록 정리해보았다.


HTTP 란 일반적으로 웹 서버 통신을 위한 프로토콜이다.
HTTPS 란 정확히 어떤 것일까?
간략하게 정리하자면, HTTPS 란 "암호화된 통신을 제공하는 HTTP" 를 일컫는다.

HTTP 를 이용해 클라이언트와 서버가 통신을 할때, 암호화 통신을 위한 키를 설정하고 통신을 하게 된다.

이 때 사용되는 암호화 방식은 공개키 암호화방식을 사용하며, 데이터를 암호화하는데 2개의 키를, 복호화하는데 한개의 키를 사용한다.

HTTP 프로토콜을 사용하면 공격자가 패킷을 가로챌 경우, 평문이기 때문에 해당 데이터를 갈취하고, 변조해서 공격이 가능하다. (Man in the middle)
이에 반해 HTTPS 프로토콜을 사용하면, 패킷이 중간에 탈취되더라도 공격자가 메시지를 알아내고 암호화까지 하여 변조하는데, 일반적으로 천문학적인 시간을 소모하게 된다.

이처럼 암호화된 통신을 함으로써 안전한 구조를 가져갈 수 있지만, 공개키 암호화와 복호화 과정은 많은 비용을 수반한다.
따라서 HTTPS 통신은 HTTP 에 비해 느릴 수밖에 없으며, 보통 선택적으로 사용하게 된다.

예를들어 금융정보 및 기밀 또는 민감한 개인정보들의 경우에는 HTTPS 로, 그와 상관없는 UI 처리 및 일반 컨텐츠 관련 정보는 HTTP 로 처리하는게 정석적이다.


+ Recent posts