RPC 는 기술 문서를 읽다보면, 현업에서 흔히 접하게 되는 용어지만 은근히 개념을 이해하기는 쉽지 않다.

 

RPC 의 개념을 인터넷에서 (혹은 최근에 핫한 ChatGPT 에서) 찾아보자면 다음과 같이 나온다.

 

Remote Procedure Call 은 원격 컴퓨터나 프로세스에 존재하는 함수를 호출하는데 사용하는 프로토콜로, 원격지의 프로세스를 동일 프로세스의 함수를 호출하는 것 처럼 사용하는 것을 말한다.

 

하지만 위의 개념을 읽고 한번에 와닿는 사람들은 많지 않을 것이라고 생각한다. 실제로 현업의 엔지니어들도 애매모호하게 해석하게 되는 개념 중 하나이다.

 

그도 그런게 RPC 는 특정 프로토콜 이라기 보다는 전통적인 개념의 API 호출 규약이기 때문이다.

예시를 보면 이해가 보다 쉬울 것이다.

 

POST /sayHello HTTP/1.1
HOST: api.example.com
Content-Type: application/json

{"name": "Tom"}

 

위의 예시는 HTTP 위에서 구현된 RPC 방식의 예시이다. 위의 HTTP 스키마는 HTTP Client (웹 브라우저) 를 통해 HTTP Server (웹 서버) 에 전달될 것이고, WAS 는 위의 프로토콜을 처리하기 위한 로직을 구현하게 된다.

 

여기서 보통은 "그냥 HTTP 프로토콜 아닌가?" 라는 생각이 들 것이고, 그 생각은 맞다.

하지만 일반적인 REST API 처럼 보인다면, 엄밀히 따지자면 그렇지 않다. RPC 와 REST 의 차이점은 다음과 같다.

 

  REST RPC
Protocol HTTP  프로토콜에 무관 (TCP, UDP, HTTP, WebSocket, ...)
Scheme Resource 기반의 API 인터페이스
(예) 강아지 목록을 반환하는 API 를 GET /dogs 로 설계
Action 기반의 API 인터페이스
(예) 강아지 목록을 반환하는 API 를 POST /listDogs 로 설계
Design RESTful API 는 Stateless 를 전제 제약이나 규약이 없음

 

즉, RPC 는 서버와 클라이언트가 통신하기 위한 API 의 통신 패러타임 중 하나이고, REST API 와 비교될 수 있는 차원의 개념이라고 할 수 있다.

RPC 는 기본적으로 정해진 구조를 갖고있지는 않지만, 기본적인 Terminology 를 몇가지 갖고있다.

 

  • IDL (Interface Definition Language) : 서로 다른 언어로 작성된 서비스들 사이에서 공통된 인터페이스를 정의하기 위한 중간 언어
  • Stub : 서버와 클라이언트는 서로 다른 주소 공간을 사용하므로 함수 호출에 사용된 매개변수를 변화해줘야하며, 그 역할을 담당한다
    • client stub - 함수 호출에 사용된 파라미터의 변환(Marshalling) 및 함수 실행 후 서버에서 전달된 결과의 반환
    • server stub - 클라이언트가 전달한 매개변수의 역변환(Unmarshalling) 및 함수 실행 결과 변환을 담당

그리고 위의 개념에 따라서 다음과 같은 순서로 통신이 이뤄지게 된다.

 

  • IDL 을 사용하여 호출 규약을 정의한다. IDL 파일을 rpcgen 으로 컴파일하면 stub code 가 자동으로 생성
  • Stub Code 에 명시된 함수는 원시 코드의 형태로 상세 기능은 server 에서 구현된다. Stub 코드는 서버/클라이언트에서 각각 빌드된다
  • 클라이언트에서 stub 에 정의된 함수를 사용 시 client stub 은 RPC runtime 을 통해 함수를 호출하고 서버는 수신된 Procedure 호출에 대해 처리 후 결과를 반환
  • 클라이언트는 서버로부터 응답을 받고 함수를 로컬에 있는 것처럼 사용할 수 있다

 

이해가 잘 되지 않는다면 쉽게 말해서, RPC 는 이를 해석하고 처리하기 위한 Client / Server 가 존재하며, 그 사이에 규약(IDL) 을 정의하고 IDL 을 클라이언트측 / 서버측 Stub 을 통해 해석하고 비즈니스 로직을 구현한다고 보면 된다. 

 

RPC 는 RESTful API 에 비해 복잡하며, 프로젝트에 따라 Learning Curve 가 있기 때문에,

근래에 RPC 의 개념은 전통적인 방식으로는 잘 사용되지 않으며 gRPC (Google RPC) 와 같은 발전된 개념으로 사용되어진다.

 

RESTful API 가 갖는 개념적 제한에서 벗어나서 보다 자유로운 설계를 위해 사용되는 개념이고, gRPC 와 같은 Modern RPC 는 Micro Service Architecture 등에서 Internal Bidirectional Communication 을 위해 사용되어진다.

 

 

위의 예시는 gRPC 를 이용해서 Micro Service Architecture 를 구현하는 방식을 보여준다. gRPC 의 경우 Protobuf 를 스키마로 사용하기 때문에, 통신을 위한 서버-클라이언트 간에 .proto 파일에 대한 별도 관리가 필요하다.

 

Protobuf 는 구글이 만든 언어 및 플랫폼 중립적인 Data Format 으로, 일반적인 JSON Serialize / Deserialize 대비 효율적인 통신이 큰 장점이다. 관련해서는 블로그의 다음 글을 참고해볼 수 있다.

 

현업에서 RPC 는 주로, 웹 서비스 보다는 게임이나 IoT, Device 등 Non HTTP 기반 산업에서 보다 많이 보이는 형태이지만 Micro Service Architecture 가 시장에 자리잡기 시작하면서 Modern RPC 형태로 많이 보이고 있다.

 

기술이 어떻게 진화할지 모르겠지만 여러 기술적인 문제를 해결하기 위한 시도 중 하나로 알아둘 법한 패러다임이라고 생각되어진다.

 

 

 

22 년 기준 Amazon Linux2 는 CentOS 기반으로 되어있으며, 기본적으로 Yum Repository 에는 MySQL 서버의 패키지 경로가 존재하지 않는다.

따라서 먼저 Amazon Linux2 서버 위에 Yum Repository 를 추가해준다.

 

sudo yum install https://dev.mysql.com/get/mysql80-community-release-el7-5.noarch.rpm

 

Yum Repository 가 등록되었다면 다음 명령어를 통해 MySQL Community Server 를 구축해준다.

 

sudo amazon-linux-extras install epel -y
sudo yum -y install mysql-community-server

 

다음으로는 EC2 위에서 MySQL 서비스를 실행시켜준다.

 

sudo systemctl enable --now mysqld

 

서비스의 실행 상태는 다음 명령어로 확인할 수 있다.

 

systemctl status mysqld

 

MySQL 서버는 초기에 Root 계정만 존재하며, 임시 비밀번호가 발급된 상황이다. 

초기에 해야할 일은 임시 비밀번호를 대체하고, 실제 데이터베이스에 접근할 사용자 계정을 만드는 일이다.

 

sudo grep 'temporary password' /var/log/mysqld.log

명령어를 치게 되면 다음과 같이 임시 비밀번호가 튀어나온다.

임시 비밀 번호를 이용해서 MySQL 서버에 접속한다.

mysql -uroot -p

위와 같이 명령어를 입력하면 localhost 에 루트 계정으로 접속을 시도하게 된다. 비밀번호 창이 나오면 임시 비밀번호를 입력해준다.

 

초기에 MySQL 에 들어가면 가장 먼저 해야할 일은 루트 비밀번호를 변경하는 것이다. 이를 하지 않고는 사실상 아무 작업도 하지 못한다.

ALTER user 'root'@'localhost' IDENTIFIED WITH mysql_native_password BY '변경할 비밀번호';

다음 명령어를 입력해서 권한을 반영해준다.

FLUSH PRIVILEGES;

 

- 슈퍼 유저 만들기

 

Root 계정으로 MySQL 에 접근하는 건 안전하지 못하며, 필요한 권한만 가진 데이터베이스 사용자 계정을 만드는 것이 좋다.

다음 명령어를 통해 사용자 계정을 만든다.

create user '<계정 이름>'@'%' identified by '<비밀번호>';

원래는 가져야하는 권한만 정의해서 사용자 계정을 만들어야하지만, 이번 포스팅에서는 슈퍼 유저를 만들어보도록 한다.

다음 명령어를 사용하면 모든 데이터베이스에 대한 모든 권한을 사용자가 어디에서 접근하던지 부여할 수 있다.

GRANT ALL PRIVILEGES ON *.* to '<계정 이름>'@'%';

마찬가지로 설정 이후에는 다음 명령어로 권한을 반영해주도록 한다.

FLUSH PRIVILEGES;

 

 

참고 : 

https://techviewleo.com/how-to-install-mysql-8-on-amazon-linux-2/

 

CSR (Client Side Rendering) 이니 SPA (Single Page Application) 과 같은 내용들은 10년도 지난 개념들이지만, 시장이 변하는건 그렇게 빠르지 않다.

 

많은 웹 서비스들이 아직 SSR (Server Side Rendering) 기반으로 백엔드와 프론트엔드를 관리하고 있으며 아키텍처를 어떻게 디자인하는 것이 좋은지는 장단점이 있는 중요한 설계 포인트 중 하나가 된다.

특히 팀의 개발 환경 구성 및 전체적인 설계도를 구상해야하는 시니어 개발자 및 Tech Lead 라면 사용 사례를 잘 분석하고 알맞은 접근 방법을 택하는 것이 중요해진다.

 

이번 포스팅에서는 CSR 기반의 Single Page Application 을 위한 프론트엔드 개발 파이프라인을 알아본다.

 

여전히 Java 와 Spring 환경은 주류이지만, 이 환경이 지배적이던 수 년 전에는 프론트엔드 코드가 백엔드 어플리케이션과 같이 묶여서 개발되어지고 배포되어지는 SSR (Server Side Rendering) 방식이 대부분이었다.

이렇게 되면 개발 환경이 분리되지 않기 때문에 역할 분리나 협업에 있어서 애로 사항들이 발생하고, 무엇보다도 하나의 WAS 가 프론트엔드 & 백엔드를 모두 서비스하게 되다보니 배포도 같이 일어나며 인프라 비용의 비효율성도 생기게 된다.

백엔드의 버그가 생겼는데 프론트엔드 코드까지 재빌드가 되어야하거나, 프론트엔드는 리소스를 거의 잡아먹지 않는데 백엔드가 리소스를 많이 잡아먹어서 Scaling 을 해야하는 경우를 생각해보면 이해가 빠를 것이다.

 

무튼.. 이러저러한 애로사항이 있던 와중에 밀결합(Decoupling)의 개념이 세계적으로 대세가 되며 프론트엔드와 백엔드가 분리되어 각자의 라이프사이클을 가지며, API 를 통해 통신하는 CSR 방식이 점차 확산되어졌다.

CSR 방식에서는 프론트엔드와 백엔드가 물리적으로 분리되기 때문에 인프라를 각자 관리할 수 있으며 개발 환경이 나뉘어지기 때문에 역할 분리 및 작업의 비효율성이 개선되어질 수 있다.

 

그렇다면 Client Side Rendering 을 위한 아키텍처 설계는 어떻게 이뤄질까?

먼저 동적 코드에서 정적 코드가 분리된다는 점에 주목해야한다.

기존에 프론트엔드는 Javascript 가 동적 로직을 처리하기는 하지만 기본적으로 클라이언트 브라우저에서 동작한다는 측면 때문에 정적 리소스 (Static Resource) 로 분류되어진다. 

 

이와 같은 정적 리소스들은 인터넷에서 접근될 때 클라이언트 브라우저가 "다운로드" 하여 "실행" 하는 방식이기 때문에 웹 기반의 스토리지에서 제공되어질 수 있다.

이 말은 웹 서버만으로도 정적 리소스는 제공될 수 있으며, 당연히 CDN 을 통한 가속화도 가능하다는 것이다.

 

예전에는 웹 서버 스택을 nginx, apache 위에서 로드밸런싱을 구축해서 제공을 했었지만 클라우드 환경이 대세가 되면서 이 역시 Amazon S3 와 같은 웹 기반의 스토리지로 옮겨가게 되었다. 그리고 이런 정적 웹사이트는 Amazon CloudFront 와 같은 CDN 을 통해 사용자 더 가까운 위치에서 제공될 수 있게끔 디자인이 되게 된다.

 

위와 같이 구성 시 사용자는 CDN 을 통해 전세계 어디에서든 빠르게 정적 리소스를 접근할 수 있으며, 해당 리소스의 렌더링을 받을 수 있다. 또한 S3 와 같은 스토리지는 내구성이나 가용성을 AWS 에서 관리해주기 때문에 개발자 입장에서는 nginx 환경 구성이나 Auto Scaling 을 직접 구축할 필요없이 최소한의 노력으로 서비스를 구축할 수 있게 된다.

 

특히 위와 같은 구조는 동적인 처리가 적게 요구되는 마케팅 페이지 등에서 많이 활용하는 아키텍처이기도 하다.

 

그러면 위와 같은 변경된 구조에서 코드의 배포는 어떻게 수행해야할까?

전통적인 환경에서는 Jenkins 등을 통해 백엔드와 프론트엔드가 전체 빌드된 이후 서버 머신들 위에 직접 배포되었지만, 위와 같은 경우에는 머지된 코드가 단순히 Amazon S3 라는 오브젝트 스토리지 위에 배포되기만 하면 된다. 다만 React 와 같이 프론트엔드 코드를 빌드해주는 경우, 이에 대한 작업 구성은 별도로 필요해진다.

 

AWS 의 CodePipeline 은 위의 배포를 지원하며, 코드 저장소에서 작업한 코드가 Merge 되면 자동으로 S3 에 빌드가 배포되게 구성할 수 있다.

다음 샘플은 AWS 의 Infra As A Code 툴인 AWS CDK 를 이용해서 위의 파이프라인을 만들어놓은 샘플이다.

CDK 를 구동하기만 함으로써 쉽게 AWS 를 활용해서 정적 페이지의 구성과 개발을 위한 파이프라인을 만들어 볼 수 있다.

 

코드 참고 : 

https://github.com/jinspark-lab/cdk-samples/tree/main/frontend-cicd 

 

React 기반으로 어플리케이션을 배포하는 프론트엔드 파이프라인이 만들어져있기 때문에 React 개발 및 배포 환경 구성이 필요할 때 참고해볼 수 있을 것 같다.

 

CSR 이 무조건적인 장점만 있는 것은 아니며, SEO (Search Engine Optimization, 검색 엔진 최적화) 에 있어서 불리한 측면이나 작업 완료 시간이 SSR 에 비해 느리다는 점 등이 단점으로 뽑히며, 현재 두 개념은 적절히 혼합되어 사용 사례에 알맞게 사용되고 있다고 볼 수 있다.

 

 

 

+ Recent posts